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The energy of the ground state of helium is calculated according to the variation method
with trial functions formed from a number of different types of linear combinations of Gaus-
sian functions. These functions are compared with respect to a) their convergence towards the
exact wave function with increasing number of linear terms, b) the effectiveness of different
kinds of correlation functions ¢) numerical labour.

Die Energie des Grundzustands des Heliumatoms wurde gemal der Variationsmethode
mit Hilfe einer Anzahl verschiedener Typen von Linearkombinationen Gaussscher Funktio-
nen berechnet. Diese Funktionen werden beziiglich a) ihrer Konvergenz zur exakten Wellen-
funktion mit zunehmender Zahl von linearen Gliedern, b) der Wirksamkeit verschiedener
Korrelationsfunktionen, ¢} des numerischen Aufwands verglichen.

L’énergie de I'état fondamental de P'atome d’hélium a été calculée selon la méthode de
variations avec divers types de combinaisons linéaires des fonctions gaussiennes. Des compa-
raisons sont faites concernant a) la convergrence de ces fonctions avec le nombre de membres
linéaires vers I'exacte fonction ondulatoire, b) Iefficacité de diverses fonctions de corrélation,
¢) le travail numérique.

1. Introduction

It is well known that the evaluation of quantum mechanical molecular inte-
grals is greatly facilitated by the use of linear combinations of Gaussian functions
(L. . G. £.) or of Gaussian functions multiplied by polynomials [7]; and it has been
shown that this is true even when these functions contain exponential correlation
terms of the form A #; - #;or A 3 (ry, #; being the position vectors of the i-th and
j-th electrons) [2, 12].

The expansion of atomic orbitals in terms of L. ¢. G.f. ’s is of interest for several
reasons: 1. molecular orbitals are usually formed from atomic orbitals, 2. a stan-
dard method for the evaluation of molecular integrals is based on such expansions
(cf. [10]), 3. the use of 1. ¢. G.f. ’s in atomic problems can serve as model experi-
ments for applications in molecular problems.

Some information about the expansion of hydrogen-like atomic orbitals into
Le.G.f s is available [7, 9, 4] and some work on helium and beryllium, involving
Gaussian functions has been reported [9]. The usefulness of Gaussian basis fune-
tions in molecular problems has been demonstrated by the excellent results ob-
tained for methane [6].

The classical papers of HyrLuerAAs [3, 4] and of Jamss and CooLIDGE [§] have
shown that accurate calculations of electronic energies almost certainly require the
use of ‘correlated’ pair electron functions; and there has been in recent years a
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revival of interest in possible applications of such functions in many-electron
systems (cf. [8]). This paper reports the first part of a fairly extensive survey of
various types of Gaussian two-electron wave functions; the work was undertaken
as a preliminary study to the possible use of such functions in larger molecular
systems. Some encouraging calculations for the ground state of the hydrogen
molecule by means of Gaussian two-electron functions have been reported [7]
and an extension of this work (unpublished) has led to fairly accurate wave
functions (Dp.g = 4.72 V). This paper deals with the ground state of helium;
a similar survey for the ground state of the hydrogen molecule will be published
in due course.

2. The choice of functions

Variational calculations, ¢. e. minimisations of the energy with respect to all
parameters were carried out for functions belonging to the classes listed in Tab. 1.
The selection of these functions was based on the following considerations: type La
contains the largest number of exponential parameters (a;, b;, ¢;) for a given num-
ber of linear terms, or, conversely, the smallest number of linear terms for a given
number of exponential parameters. Type ILa is the other extreme, ¢. e. the largest
possible number of linear terms (excluding polynomial factors) is formed from a
given number of exponential parameters (¢; or a; and ¢;). Calculations with a
function of this type have been reported by REEvEs [9].

The optimisation of exponential parameters is much more laborious than that
of the linear parameters; one would therefore expect that Ia might be computa-
tionally advantageous when the optimum values of the exponential parameters
are known while ITa might be superior when they have to be optimised. Types I'b
and IIb are derived from Ia and ITa by replacement of the exponential correla-
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tion factors exp (—2¢ »,-¥,) by polynomial correlation terms 1 + Avy -7y (A=

G/C), involving & change from exponential to linear correlation parameters. I'b

and IIb are linear combinations of products of one-electron functions which can

be transformed into pair functions of the form > x; y; (r;) z: (¥,) Where the y; are
%

mutually orthogonal. The fact that the types Ia, IXa (and IIIa) are not sums of
products of one-electron functions is likely to limit their application in many-
electron systems on account of the non-orthogonality problem.

Type Ic differs from Ib by having correlation factors of the form 1 -+ 4%,
instead of 1 -+ A #;-#,. IIla was (rather incompletely) examined because of its
analogy to the ordinary (1s’ 1s”)-function for helium. Here the parameters of the
I. e. G. f. approximations to the H-atom 1s-function should, when correctly scaled,
be close to the optimum parameter values of the helium IIT a-function.

Although correlation factors of the form exp (—A vy 7,) and 1 4 1,7, are
known to be less effective than either exp (— A4 y,) or 1 -+ 4 7y,, functions incor-
porating the latter types of correlation factors were not examined because their
use in molecular problems would lead to serious numerical difficulties.

To facilitate reference in the text, any particular funection belonging to the
classes of Tab. 1 is denoted by its type (e. g. Ia, IIb, etc.) followed by a bracket
listing the numbers of each kind of parameter. Thus the function

12 R
2 Ci(L+ Oy) exp (— a; 2 —b; 13)

i=1

will be referred to as Ta (120, 12a, 12b) or as Ta (12C, 12a, 120, Og). Similarly,
Ib (6C, 66, 6a, 6b) is the function

6
2 (Gt Goryry) (L4 01 exp (— g1 — by )

and ITa (210, 6a, 1g) refers to

8 6
2,2 O (L+ Op) exp (= apri — arrf — 29 1y07y)

“2¢” in ILa (21C, 6a, 2g) implies that gi; = g, or g, depending on the value of the
index &l. (This specification is incomplete.) Reference will also be made to La (0g),
i. e. the Ta-series without correlation parameters, or to La (ng) the La-series with
the maximum number of # correlation parameters, ete.

3. Results and discussion
The results obtained after minimising the energy with respect to all parameters
(cf. section 4) are listed in Tab. 2. Column 2 contains the energies in modified
atomic units (Bgehc = 0.5 a. u.), column 3 the error A = B — Eexp. Columns 4,5
and 6 contain data which are relevant to the numerical labour required to obtain
the results (see section 3d).

a) Convergence towards the exact wave function
The convergence of the energies (or errors) to limiting values, £ (or 4..)
with increasing numbers of linear terms (N) is illustrated in Fig. 1. The data
are sufficient to indicate that A for the maximally correlated Ia — functions
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[Ia (ng)]is very small — certainly less than 0.001 a. u.: the best calculated energy
for N =n = 16 corresponds to 4 = 0.0014 and Fig. 1 shows that there is no sign of a
change of slope of the linear dependence of log A on logN at this point. The appa-
rent absence of a finite limiting error is a little surprising since Gaussian functions
have an analytically incorrect behaviour, . e. there is no cusp at r = 0. For the I a-
and ITa-functions without correlation parameters [La (Og) and ILa (0g)] 4.
appears to be close to 0.025; the best calculated energies, —2.87835 for Ia (160,
16a, 165, 0g) and —2.87833 for I1a (21C, 6a, Og) lie within 0.0007 a. u. of the
“8.limit”, 4. e. the limiting energy obtained by superposition of hydrogen-like
open shell functions of spherical symmetry by SHULL and LéwpIN [11].

Table 2

function E(a.u) A=FE-Eexp | e.m.e. [T.e.m.e.| trfc
Ta (4C, 4a, 45, Og) —2.86327 ’ 0.04045 10 4 32
Ta (8C, 8a, 8b, Og) —2.87651 0.02721 36 8 128
Ta (12C, 12a, 125, Og) —2.87767 0.02605 78 12 288
Ta (16C, 16a, 160, 0g) —2.87835 0.02537 136 16 512
Ia (12C, 122, 12b, 1g) —2.88921 0.01451 78 12 300
Ta (12C, 12a, 12b, 29) —2.89375 0.00997 78 12 312
Ia (3C, 3a, 3b, 39) —2.86422 0.03950 6 3 27
Ta (4C, 4a, 45, 49) —2.88073 0.02299 10 4 48
Ta (8C, 8a, 8b, 8g) —2.89808 0.00564 36 8 192
Ia (120, 120, 12, 12g) —2.90059 0.00313 78 12 432
Ta (16C, 16a, 160, 16g) —2.90233 0.00139 136 16 768
Ib (3C, 3G, 3a, 3b) —2.86516 0.03856 21 1 66
Ib (6C, 6G, 6a, 6b) —2.89463 0.00909 78 23 276
Ib (12C, 12G, 12a, 12b) —2.89959 0.00415 300 47 1128
Ic (6C, 6@, 6a, 65) —2.89521 0.00851 78 23 276
Tc (12C, 123, 12a, 12b) —2.89976 0.00396 300 47 1128
ITa (6C, 3a, Og) —2.85121 0.05251 13.5 10 30
ITa (10C, 44, Og) —2.87185 0.03187 38 24.5 98
ITa (150, 5a, 0g) —2.87675 0.02697 87.5 49.5 2417.5
1T a (21C, 6a, Og) —2.87833 0.02539 175.5 88 528
ITa (6C, 3a, 1g) —2.86339 0.04033 13.5 10 40
I1a (10C, 4a, 19) —2.88364 0.02008 38 24.5 122.5
ITa (15C, 5a, 19) —2.88850 0.01522 87.5 49.5 297
Il a (210, 6a, 1g) —2.88991 0.01381 175.5 88 616
ITa (6C, 3a, 29) —2.86916 0.03456 13.5 10 50
ITa (10C, 4a, 2g) —2.88681 0.01691 38 24.5 147
ITa (15C, 5a, 2¢) —2.89279 0.01093 87.5 49.5 346.5
ITa (210, 6a, 29) —2.89546 0.00826 175.5 88 704
I1a (6C, 3a, 6g) —2.86936 0.03436 13.5 10 90
I1a (10C, 4a, 10g) -~2.89038 0.01334 38 24.5 343
I1a (15C, 5a, 159) —2.89550 0.00822 87.5 49.5 990
IIb (6C, 16, 3a) —2.86386 0.03986 49.5 37.5 112.5
I1b (6C, 6@, 3a) —2.87201 0.03171 49.5 37.5 112.5
I1b (100, 106G, 4a) —2.89293 0.01079 144 94.5 378
11T a (4, 4, 0) —2.86809 0.03563 136 64 512
I11a (4,4, 1) —2.88442 0.01930 136 64 576
Eexp = —2.90372; e. m.e. = number of equivalent matrix elements; r.e.m.e.= number

of equivalent matrix elements recalculated when an exponential parameter is varied;
t. r.jc = number of equivalent matrix elements recalculated during one cycle.
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Although no reliable extrapolation can be carried out for the series with linear
correlation parameters [1b (nC, 0@, na, #b), ILb (NC, NG, ma)] it is clear from
Fig. 1that Ib (n() does not converge as well as Ta (ng) and that A, for Ib (nG) is
probably less than 0.0025 (E<< —2.9012). Ib (nG) is slightly better than Ia (ng)
at n = 3 and slightly worse at n = 12, the differences being ~ 0.001 in both cases.

As to the ITa-functions with correlation parameters, A_, for ITa (1g) appears
to be approx. 0.013 (£ = —2.891). Graphical estimation of A, for IIa (2¢) from
Fig. 1 is not possible; the best calculated energy [Ila (21C, 6a, 2¢)] is —2.895486,
i.e. 4 = 0.00825 and A, is probably less than 0.006.

For the ITa (NC, ma, Ng) function (N = m (m -+ 1)/2, maximally correlated)
the decrease of log A with log N is — as one would expect — slower than for
Ia (ng). Although A, cannot be estimated from the diagram, it is not likely that
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Fig. 1. Relationship between error (4) and the number of independent linear terms (N)

N1 (ng)

its value is larger than that for La (ng); the energies for Ia (0g) and ITa (0g) tend
to the same limit (see above); and since for IIa (Ng) the ratio of correlation
parameters to other parameters is larger than for 1a (ng), it must be assumed that
the g-correlation energy in the former will be at least as effectively allowed for as
in the latter. The limiting behaviour of ITa (Ng) functions is, however, of little
practical interest since accurate wave functions of this type are disadvantageous
on account of numerical labour (cf. section 4).

b) Correlation
According to the definition Beorr. = ¥ (Hartree-Fock) — Eexp the correlation
energy for the ground state of helium is —2.86168 - 2.90372 = 0.04204 a. u.
The work of Tayr.or and PARR [13] and its extension by other workers (cf. [§] ¢h.3)
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has shown that this quantity can be regarded as the sum of “‘radial” and “angular”
correlation energy (approx. 40%, and 609, respectively). The radial part can be
accounted for by a superposition of configurations of the type (ns’ ms’), the angu-
lar part by addition of (2p')%-, (3d')%-, and (4f')2- terms, or, alternatively, by addi-
tion of (rp’ mp')- and similar terms for 7 = 2, 3, ete. (the primes indicate a variable
scaling factor; m, n are integers).

In the present work the functions without exponential or linear correlation
parameters, i. e. La (0g), I1a (Og) correspond to a superposition of split Gaussian
orbitals of 1s-symmetry: > 2. (183 187); the contribution to the correlation energy

T 7

arising from the use of such functions might be called (1s; 1s;)-correlation. In I'b
and ILb terms of the type (2p; 2p;) are added to the former. The exponential
correlation factors in Ta and ILa (and IITa) may, in view of the expansion

exp (— A7y 1y) = 2y (g 1)" (1)

be regarded as equivalent to a superposition of (1s; 1s;) with (2p; 29;), (3d; 3dy),- -,
efc. with fixed expansion coefficients. Since #, -#, depends not only on the angle
between the radius vectors but also on their magnitude, factors of the type
exp (— A vy - #y) or 1 + A vy - r, contribute to both angular and radial correlation.

It is of some interest that the (1s; 1s;)-correlation in the simple Gaussian func-
tions

Ia (0g): kgl Cr (1 + Op)exp (— ax 7t — by r3)

m m
or ILa (0g): k;1 l)Zk Crr (1 -+ 0ypp) exp (— ax 12 — ay 73)

accounts for nearly as much of the radial correlation (i. e. 969,) as superpositions
of exponential functions multiplied into Laguerre polynomials [17].

Concerning the comparison of polynomial and exponential correlation factors
(1 + Arywy) and exp (— A #,-7,) the following points are relevant: E [Ia (ng)] —
E[Ib (nG)] = 0.0009 for n = 3 and —0.001 for » == 12. Graphical interpolation
indicates that the energies for Ib (@) and for Ia (ng) are about equal forn =7
(B = —2.897) and that the superiority of Ia increases with larger values of n.
(cf. section 3a). The differences between the energies of corresponding Ila (Ng)
and ITb (Ng) [N = m (m + 1)/2] is rather larger (0.00275 for N = 6, 0.00255 for
N = 10) and in favour of ILb. These results suggest the tentative generalisation
that the correlation factors exp (— 4 »,-7,) contribute more effectively towards
angular correlation and less effectively towards radial correlation than the factors
1 4+ A v, -r,. Thus, where the radial correlation is almost completely accounted
for by (1s; 1s;)-correlation without correlation parameters, exponential correlation
parameters are more effective; polynomial correlation parameters are better
where a significant contribution to the radial correlation remains to be made. The
latter situation applies to the less accurate functions (¥ > —2.897).

The energy obtained with Ib (120, 12G, 12a, 12b), B = —2.8996, is slightly
better than Tavror and Parr’s [13] superposition (1s’ 1s”) + (29" + (3d')% +
(42, B = —2.8975. This raises the question whether the inclusion of configura-
tions with [ > 1 to account for angular correlation is as effective as superpositions
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of the type
2 ; (1s: 1s5) + (2p: 2y).-
[

Comparison of Ib (r?) and Ic (nG) shows that correlation factors 1 + 413,
are only very slightly better than the computationally simpler 1 + 4 #;-%,; the
energy differences are 0.0006 for # = 6 and 0.0002 for n = 12.

Since it is desirable to reduce numerical labour trial functions containing less
than the maximumn number of correlation parameters are of interest. When the
number of g-parameters in ILa is changed form 0 to 1 4. e. gz = ¢ instead of 0 for
all &, 1), the energy is reduced by 0.012 a. u. This improvement is almost constant
between m = 3 and 6 amounts to a little less than half the residual correlation
energy after allowance is made for (1s; 1s;)-correlation. The same improvement
(within the limits of error) results when one g¢-parameter is introduced in Ia
(12C, 12a, 120, Og). The corresponding effect of one linear correlation parameter
changing IIb (6C, 06, 3a) to ILb (6C, 16, 3a), which is equivalent to a multiplica-
tion of the former function by 1 + 2 #, 7y, is only slightly larger (0.0127).

A change in the number of g-parameters in ITa from one to two produced a
much smaller improvement which increased almost linearly from 0.002 for m = 3
to 0.006 for m = 6.

¢) Parameter values

Tables of parameter values are in the appendix. In view of the numerical
labour required for the optimisation of exponential parameters any method for
the approximate prediction of optimal parameter values would be valuable. No
useful regularities have, unfortunately, been hitherto detected in the parameter
values of the type I series. |

The parameters of the Ila series, on
the other hand, are a little more predict-
able. REEvES [9] obtained a good esti- 20
mate for the a-parameters of Ila (60, 3a,

Og) by appropriate scaling of the expo-

loga
3

nential parameters of the three-term -

Gaussian approximation to the 1s-(H- -

atom) orbital. This method appears to be

inapplicable to the higher members of -

the ITa series (m = 4, 5, 6); the a-para- -

meters of the helium-function diverge n

from the scaled values of the correspond- =

ing 1s-parameters, the former spreading o0

over a wider range than the latter (Tab. 3). L

It may be noted, in passing, that the range

of the helium a-parameters decreases L

progressively as one and two g-para-

meters are introduced: the inability of J ¥ . J d

the electrons to avoid each other by Fig. 2. The variation of the exponential para-

being preferentially on. opposite sides of meters (z) with m for the series ITa (NC, ma,
0g) [N = m (m + 1) [2]. (Ordinate: log a;,

the nucleus apperas to lead to a tendency i =1 to m, abscissa m)
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towards greater radial (anti-)correlation through a greater separation between
the spherical shells.

The fairly regular variation of the a-parameters in ITa (NC, ma) with m is
illustrated in Fig. 2%. A check calculation with interpolated parameters for
ITa (100, 4a, Og) gave B = —2.87082; a similar calculation with a-parameters
determined by linear extrapolation (along the dotted lines in Fig. 2) gave 2.87696
for ITa (21C, 6a, Og). These values differ from the best energies obtained for these
functions by, respectively, 0.00103 and 0.00137.

No regularities in the values of the exponential correlation parameters were
detected in Ta. A surprisingly large number of these parameters is negative 1. e.

Table 3

Comparison of the ratios of a-parameters for Gaussian approximations to the H-atom 1s orbital*

n
Z Ciexp (— a;12) and for the He-atom 11 a-functions

1=1
ayfa, asja, asfa, as/oy asfa,
Hon=3 4.87 36.1
TIa (6C, 3a, Og) 5.23 35.0
ITa (60, 3, 29) 5.18 35.5
Hon=4 3.43 14.7 98.2
TIa (10C, 4a, Og) 4.21 19.2 127
TIa (10C, 4a, 29) 413 18.5 121
Hyn=75 3.01 9.45 356 | 220
IIa (15C, 5a, 0g) 3.82 15.4 69.8 453
T a (150, 5a, 1g) 3.66 14.2 64.0 423
I a (150, 5a, 29) 3.10 10.9 46.7 310
H,n=6 2.89 660 | 172 57.3 242
ITa (210, 6a, Og) 2.01 9.19 33.5 150 987
IIa (21C, 6a, 1g) 2.95 9.23 33.1 149 077
IIa (210, 6a, 2g) 2.81 9.14 322 | 136 875
l

* LoNGSTAFF and SINGER [7]

give rise to a positive angular correlation**. This feature becomes less paradoxical
if one remembers that the matrix elements H .y or Spy depend on the values of
gm and g, so that there may be compensations between positive and negative
g's in different terms; further, the kinetic energy integral contains terms which
increase with ¢, + g and with g, gy so that the corresponding matrix elements
may be appreciably reduced if g,, and g, have opposite signs.

The correlation parameters of ITa and of ITb exhibit qualitative features
which one might expect: Gy, is usually strongly negative when az and a; are both
fairly large (>> 1) and of the same order of magnitude; i. e. if the two electrons are

* similar diagrams can be obtained for ITa (1g), Ila (2¢) and Ila (Ng)
** the negative values persist or reappear even after repeated attempts to obtain po-
sitive optimum values
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in fairly small strongly overlapping orbitals. Gy is usually small — positive or
negative — when ay and a; are small (< 0.4) or when ay and a; are of different order
of magnitude 7. ¢. when the mean distance between the electrons is large even in
the absence of (2p; 2p;)-correlation. The exponential correlation parameters
follow the same pattern (except for the difference in sign).

d) Numerical labour
A comparison of the practical utility of the functions surveyed in this paper
will depend on the answers to the following to questions: A. Which type of func-
tion will yield a certain degree of accuracy with the least expenditure of compu-
ting time when all parameters
are unknown ? B. Which type
of function will yield a cer-

N

tain degree of accuracy with -4 7 (09)
the least expenditure of com- C——
Iy (! 09/

puting time when the opti-
mum values of the exponen- \ I, (lg)
tial parameters are known ? \\\\“
Column 4 of Tab. 2 con- -2 - Zy M)
tains the “equivalent” num- < \
bers of H- or S-matrix ele- —
ments which have to be cal-
culated to determine the 7 (76)
energy. “‘Equivalent” means  _z5 .
that allowance has been made
for the fact that for some Za(ng)
matrix elements the numeri-
cal labour is halved because .
L2 H|L,2)=(1,2|H|2,1). _g ! \
The entries in this column “ 1 Iog/zz‘i /i) 28 0
ar.e deaﬂy relevan't to que- Fig. 3. Relationship between the error (4) and the numerical
stion B (computation when labour required to optimise all parameters (t.r./c)
exponential parameters are
known). When all exponential parameters have to be optimised by minimi-
sation of the energy with respect to each parameter in turn, it is only neces-
sary to recalculate those matrix elements which contain the parameter which is
being varied. The numbers of equivalent matrix elements which have to be
recalculated at each step of the minimisation (r.e.m.e.) is listed in column
5 of Tab. 2. If these numbers are multiplied by the number of exponential para-
meters, one obtains — apart from a common factor of 3 — the total number
of matrix elements which have to be recalculated during one minimising cycle
(t. 1./c) (column 6 of Tab. 2). These entries provide the information required to
answer question A (computation when all parameters are unknown) if the follow-
ing assumptions are made: 1. the time required to minimise the energy with
respect to the linear parameters is relatively small; 2. the time required to eva-
luate an equivalent matrix element and to store the matrix element in its appro-
priate matrix position does not depend on the type of function or the number of

A

I, (2g)
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its linear terms; 3. the number of minimising eycles required to attain the final
energy is independent of the type of function and of the number of its linear terms.
Although these assumptions are certainly incorrect, it is unlikely that a more
elaborate analysis would alter the qualitative conclusions drawn from the entries
in Tab. 2. Actually observed computing times could have been listed but this
would have given undue emphasis to the characteristics of the computer and the
computer programmes used in this work.

Fig. 3, where log 4 is plotted against log (t. r./c), shows that question A can
be answered in this sense: If the energy is to be calculated with an error of A <<
0.04 a. u. Ia (ng) is superior to all other types listed in Tab. 1; this is so in spite
of the relatively large number of exponential parameters which have to be optimis-
ed in this type of function. For 4 <C0.02 Ib (n}) comes second (although it is
possible that ITa (Ng) may be better at 4 < 0.00025). When a smaller accuracy,
1. e. 4 > 0.02 is sufficient, ITa (1g) and IIa (2g) are superior to I'b (»@), and at
even larger errors (4 > 0.03) Ia (Og) is second best.

For A << 0.03 ITa (2g9) becomes increasingly better than ITa (1g) but the
maximally correlated IIa (Ng) does not overtake ITa (2g) until 4 < 0.008.

A plot of log A against log (e. m. e.) (not reproduced in this paper) shows that
the answer to question B is similar to that to question A; the superiority of Ia (ng)
is enhanced in this case because the Ia-functions contain the relatively smallest
number of linear parameters.

IIIa is the least favourable type of trial function. For IITa (4,4,1), B =
—2.884; this is well above the (interpolated value of) B = —2.892 for La (5C, 5a,
5b, 5g). The numerical labour required for I11a (4, 4, 1) a) to calculate the initial
energy, b) to complete one minimising cycle, exceeds the corresponding quantities
for Ia (59) by factors of 9 and 7.5 respectively. The analogous factors when IIla
(4, 4, 1) is compared with 1Ia (100, 4a, 2¢9) (F = —2.887) are 4 and 3.9.

It should be remembered that the above comparisons apply only to two-
electron systems and that the additional features arising in many-electron sys-
tems strongly favour I b and II'b against, respectively, Ia and ITa (cf. p.4above).

4. Computational methods

The evaluation of all integrals is elementary. Optimisation of the values of the
exponential parameters was effected by minimisation of the energy with respect
to each parameter in turn; from the E-values corresponding to three adjacent
equidistant parameter values the minimum was calculated by parabolic inter-
polation or extrapolation. When this had been done for all exponential parameters
an extrapolation procedure was employed: let values of the parameters determine
a many dimensional vector a; at the end of a cycle @ has changed to a + da; the
energy is now calculated for parameter values a + 2 da, if E has further decreased,
it is calculated for a + 3 § a efc. until § is found such that @ 4 j § ais a minimum.
Another minimising cycle is then carried out followed by extrapolation and this
sequence is continued until further optimisation has become unprofitable. In
most cases the criterion adopted was that an additional cycle and extrapolation
should not reduce £ by more than 10-5 a. u. The extrapolation procedure greatly
improved the rate of convergence towords the final energy.

Linear parameters were in most cases minimised by matrix methods; a) first
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E was adjusted so as to make the determinant || H — ES || = 0; b) the linear
parameters were determined as the eigenvector of the matrix HS-'. This was
done initially and a number of times during each cycle and whenever the energy
was calculated during extrapolation.

In some of the computer programmes the linear parameters were optimised
in the same manner as the exponential parameters; check calculations in some
such cases showed that the final energy did not decrease further by a matrix
minimisation with respect to the linear parameters.

In some of the programmes the exponential parameters were automatically
scaled by setting B = —V?/(4 T8) (V potential energy, 7' kinetic energy, S over-
lap sum). The final energy does not appear to depend on whether or not the scaling
procedure is used, though the rate of convergence to the final value may be affected.

There remains the important question whether the energies listed in Tab. 2
are close to the absolute minima. To check this by carrying out minimisations
starting from widely different sets of initial parameter values requires a great deal
of computing time and was only done in one or two cases. It appears that the
final energy in the Ia and ITa series is insensitive to the initial choice of para-
meters, but that this may not be so for Ib and Ilb, which contain polynomial
factors. Work on more general types of polynomial Gaussian functions for helium
(unpublished) indicates that subsidiary minima may prove rather troublesome.
The fairly smooth variation of the energy with the number of linear terms for a
given type of function shown in Fig. 1 is reassuring inasmuch as it indicates the
absence of appreciable fluctuations in the deviations from the “true” energies
from one member of the series to another.

Most of the numerical work was done on a Ferranti “Mercury’” computer, the
remainder on a Ferranti “Atlas” computer.
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Appendix
Parameter values
2 b g C G
i
Ta (4C, 4a, 4b, Og) 264 892 1
244 6.56 ‘ 0.966
2.98 835 | 2.98
812 29.8 ; 2.67
Ta (8C, 8a, 80, Og) .643 534 —
196 .598 1126
642 113.2 4.58
464 1.109 5.09
224 3.63 2.82
941 3.63 8.01
.290 18.1 3.1
1.66 o 1421 8.61

Theoret. chim, Acta (Berl.), Vol. 2 19
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a b g C
Ta (120, 12a, 120, Og) 590 .269 1 1
169 .528 3.94
187 2.59 12.45
254 16.7 17.5
420 156.7 17.8
643 .900 1 —30.1
527 1.034 ' 555
625 5.05 42.3
1.51 32.7 | 47.3
3.72 2.87 —206
2.71 4.44 214
2.08 1.97 38.7
Ia (16C, 16a, 165, Og) .408 331 1
A61 .542 2.24
.447 1.213 1.49
A79 2.33 7.24
.239 12.74 10.25
282 83.5 6.93
.609 815 ~—19.9
525 1.004 30.8
837 4.58 29.9
1.198 32.0 26.2
947 385 13.34
1.715 2.10 11.48
4.00 4.14 —8.26
503 .769 4.26
1.108 1.499 1.330
2.57 8.99 30.3
Ta (3C, 3a, 3b, 39) 270 831 .033 1
3.09 631 1238 3.93
551 19.2 —.016 2.84
Ia (4C, 4a, 4b, 4g) 274 .892 .033 1
279 5.80 —.044 1.193
2.87 .960 .259 2.69
184 29.1 .092 2.59
Ta (8C, 8a, 8b, 8g) 1.138 946 —.302 —1
.206 617 0219 .287
437 119.9 —.0040 113
654 1.303 —.0598 2.09
213 3.20 .0163 577
1.267 4.72 319 216
.364 14.50 —.0418 1.021
2.40 31.2 691 1.73
Ia (120, 12a, 120, 12g) .509 .340 —.039 1
1648 532 .0186 1.78
A75 2.57 .0108 5.21
.259 16.7 .0087 8.51
.439 153 —.0160 9.34
.653 922 —142 —17.4
.539 1.045 —.0358 29.8
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a b g C G
585 5.02 0531 20.1
1.54 30.5 456 23.9
3.73 2.86 766 1-91.2
2.74 4.38 —.557 95.4
1.96 1.94 —.0686 | 19.5
Ta (16C, 16a, 16b, 16g) 409 .332 .0451 1
161 542 .0089 1.517
447 1.213 .0234 5.84
179 2.28 —.0048 4.95
246 12.25 00380 | 7.63
284 81.3 —.00400 | 5.41
.606 812 —.0358 | —2.74
524 1.002 0427 | 10.39
626 461 0431 | 204 |
1.196 30.5 0772 19.8 }
950 | 374 .0050 9.93 |
1.715 2.02 0377 | 1378 |
3.72 3.92 —2.39 —7.89 !
493 770 288 —.370
1.041 1.455 125 -2.07
2.93 8.79 .385 21.5
Ia (12C, 12a, 12b, 1g) .610 .269 0503 1
168 .530 " 1.08
196 2.56 . 4.70
260 16.5 . 6.49
429 | 158 6.71
641 901 —0.44
525 1.035 184
.609 5.01 . 15.4
1.470 32.5 17.5
3.72 2.86 —81.9
2.72 443 . 84.6
2.05 1.99 N 15.5
b (8C, 34, 3a, 3b) 273 .861 1 —.0694
3.23 .642 3.67 988
.581 20.1 2.51 A53
1b (6C, 6G, 6a, 6b) .696 236 1 —.0459
.259 3.42 1.76 161
.350 16.2 2.05 193
1.80 7704 3.24 —1.247
737 89.8 2.77 161
7.88 1.66 5.07 ~6.23
Ib (120, 126, 12a, 12b) .202 560 1 —.0339
.239 2.06 2.77 .0644
181 8.24 1.375 —.1092
.230 76.2 1.207 —.1044
.995 598 2.61 647
T 2.02 2.42 —1.004
648 | 448 241 —.546
5.08 775 7.01 .569

19%*
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a b r g [§ G
I
2.83 2.44 1.72 | —7.74
3.0 13.27 5.41 —171
20.3 525 4.08 242
65.6 1.9 ! 5.04 2.37
Ic (6C, 64, 6a, 6b) 738 .266 1 .0357
.237 3.49 1.77 —.0389
.339 171 1.98 —.0204
2.01 .891 2.98 815
.730 90.8 2.67 —.0571
8.42 2.19 5.00 3.64
Ic (120,126, 12a, 12b) .220 .569 1 3 0264
.232 2.03 3.16 —.0174
237 8.45 1.398 1345
.232 81.2 1.432 —.0021
1.008 .659 2.312 373
-900 1.92 2.14 758
.857 441 2.95 479
4.93 701 8.20 —.338
3.17 2.43 1.59 4.30
4.10 11.9 7.19 13.30
20.4 495 4.69 —.1036
59.1 1.80 6.05 —1.013

For the functions ITa and IIb the parameters Cyi, gr: or G are listed in the order ki =

11, 12, 13, --, 1m, 22, 23, -+, 2m, etc.

ITa (6C, 3a, 0g)

e 373 1964 13.19

¢ 313 1.022 .808 1.091 1.244 —.0883

1T a (10C, 4a, Og)

e 2907 1.224 5591  36.89

C 201 1.021 1.089 .636 1.58 218 1.392 154 1.058

ITa (15C, 5a, 0g)

a 2400 9157 3.688 16.76 108.84

¢ 0973 .78 1.010 635 .360 1.68 264 1.74
986  .338 1.59 .806 —.0158 234 —.0225

ITa (21C, 6a, Og)

a .2033 5914 1.869 6.803 30.55 200.7

¢ 1 1258 2433 214 1380 7.29 282 735
648 398 225 304 866 451 268 —27.97
58.8 13.28 —56.2 329 424

I1a (60, 3a, 1g)

a 3846 1.987 13.32

g 0499

¢ 617 1954 155 1.99 227 0198

01016
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ITa (100, 4a, 1g)
a 3024 1.245 5.707 37.69

g .0488
¢ 214 1.053 1411 650 1.54 240 1.332 190 1.041 —.005

Ila (15C, 5a, 19)

a 2577 9439 3664 16.49 108.9

g 0477

¢ 116 818 1.053 692 404 162 240 1.72
870 452 1.48 912 —.0235 .0748 —.0360

ITa (21C, 6a, 1g)

a 2168 .6397 2.000 74187 32.26 211.7

g .0494

¢ 1.262 17.9 31.8 270 181 911 407
89.6 796 488 268 375 965 51.2
319 360 704 127 —720 415 —521

ITa (6C, 3a, 29)

a .3756 1966 13.12

g forkl=11,12,13 0.0358, for kl= 22, 23,33 .5015
¢ 315 1.013 815 1.160 1.239 —.0339

IXa (100, 4a, 2g)

a .2959 1497 5.253  33.97

g forkl=111t022 .0401; for 23 to 44  .4248

¢ 205 1.014 1.104 695 1.506 2.45 1.400 431 1.094 —0373

ITa (15C, 5a, 2¢)
a .3352 1.037 3.654 15.67 104.6
g forkl=11t024 0.0591;25t055 1.296
C 043¢ 450 922 583 469 1.239 1.893
2.256 .744 2128 1.59 192 —0323 348 —.00033

ITa (210, 6a, 29)

a 827 5137 1.672 5.885 24.78 160

g forkl=11t026 0.0327; for 33 t0 66  0.547

¢ .0372 994 23.03 188 13.27 175 335
78.8 84.0 500 290 806 961 745
415 —882 674 205 —60.2 389 —56.0

ITa (6C, 3a, 6g)

a 3766 1.969 13.15

g .0321 0.0443 —0.0376 479 654 015
¢ 315 1.006 .809 1.146 1.234 —.086

I1a (10C, 4, 10g)
a 2941 1.213 5439 35.60
g .0238 .0289 —.0283 —.00438 .232 349
018 2.051  3.50 2.90
¢ 204 999 1117 639 1.62 2.04 1492 629 951 —.225
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ITa (15C, 5a, 15¢)
o 2352 .7939 2.796 12.03 80.33
g 0155 .0218 —.0145 —M019 161 120
494 —.0281 —292 804 1.508 —A57
792 2320 990
¢ .0622 457 156 511 329  1.069 1.66
1.608 .764 977 1.215 .956 —.0216 .469 —.00408

IIb (6 C, 16, 30)

o 393 2061 13.85

C 174 1.043 807 514 1475 0729
¢ —1049

1Ib (6, 66, 3)

a 3757 194  13.01

0 100 644 547 357 792 138

G —0747 —.383 4186 510 —3.79 —52.7

IIb (100, 106, 4a)

a 2772 1412 5.014 33.22

¢ 100 11.28 1314 7.89 10.02 283 184
2.52 164 —4.09

G —0609 —318 134 —382 —6.16 —6.58
432 —65.9 1.84¢ 451

ITa (4, 4, 0)

a 450 834 4315 40.52

¢ a1 1479 694 1.649

b .2499 1260 3.657 15.57
D 1.95 755 2.04 1.58

I11a (4,4, 1)

a 2728 1.002 4.228 52.18
¢ 1078 732 1.253 .630

b .260 1.064 6.47 1315
D 1316 1714 —431 2.29
g 0440

G 1.00
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