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The energy of the ground state of helium is eMculated according to the variation method 
with trial functions formed from a number of different types of linear combinations of Gaus- 
sian functions. These functions are compared with respect to a) their convergence towards the 
exact wave function with increasing number of linear terms, b) the effectiveness of different 
kinds of correlation functions e) numerical labour. 

Die Energie des Grundzustands des IIeliumatoms wurde gemaB der Variationsmethode 
mit ttilfe einer Anzahl verschiedener Typen yon Linearkombinationen Gaussseher Funktio- 
nen bereehnet. Diese Funktionen werden beziiglich a) ihrer Konvergenz zur exakten Wellen- 
funktion mit zunehmender Zahl von linearen Gliedern, b) der Wirksumkeit versehiedener 
Korrelationsfunktionen, c) des numerischen Aufwands verglichen. 

L'@nergie de l'6tat fondamental de l'atome d'h61ium a 6t@ caleul@e se]on la m6thode de 
variations avec divers types de combinaisons lin6aires des fonctions gaussiennes. Des compa- 
raisons sont faites eoncern~nt a) l~ eonvergrence de ees fonetions avec le nombre de membres 
lin6aires vers l'exacte fonetion ondulatoire, b) l'effieaeit6 de diverses fonctions de corr6lation, 
c) le travail num6rique. 

1. Introduction 
I t  is well  k n o w n  t h a t  the  eva lua t ion  of  q u a n t u m  mechanica l  molecular  inte-  

grals is g rea t ly  fac i l i t a t ed  b y  the  use of  l inear  combina t ions  of  Gauss ian  funct ions  
(1. e. G. f.) or of  Gauss ian  funct ions  mul t ip l i ed  b y  polynomia ls  [1]; and  i t  has been 
shown t h a t  th is  is t rue  even when these  funct ions  conta in  exponen t ia l  corre la t ion 
te rms  of  the  form ~ r / � 9  r j  or ~ r~ (ri, r j  being the  posi t ion vectors  of the  i - th  and 
]- th electrons) [2, 12]. 

The expans ion  of  a tomic  orbi ta ls  in t e rms  of  1. c. G.f .  's is of  in teres t  for several  
reasons:  i .  molecu la r  orbi ta ls  are usua l ly  fo rmed  from a tomic  orbi ta ls ,  2. a s tan-  
da rd  m e t h o d  for the  eva lua t ion  of  molecular  in tegra ls  is based  on such expansions  
(of. [10]), 3. the  use of  1. c. G. f. 's in a tomic  problems  can serve as model  experi-  
men t s  for app l ica t ions  in molecular  problems.  

Some in fo rmat ion  abou t  the  expans ion  of  hydrogen- l ike  a tomic  orbi ta ls  into 
1. c. G. f. 's is ava i lab le  [7, 9, 14] and  some work  on he l ium and beryl l ium,  involving 
Gauss ian  funct ions  has  been r epo r t ed  [9]. The usefulness of  Gauss ian  basis  fune- 
t ions in molecular  p roblems  has been d e m o n s t r a t e d  b y  the  excel lent  resul ts  ob- 
t a i ned  for me thane  [6]. 

The classical papers  of  I trLL~aAAS [3, 4] and  of  J A ~ . s  and  COOLIDG~ [5] have  
shown t h a t  accura te  calculat ions  of  electronic energies a lmos t  ce r ta in ly  require  the  
use of  ' co r re la ted '  pa i r  e lect ron funct ions ;  and  there  has been in  recent  years  a 
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revival of interest in possible applications of such functions in many-electron 
systems (el. [8]). This paper reports the first par t  of a fairly extensive survey of 
various types of Gaussian two-electron wave functions; the work was undertaken 
as a preliminary s tudy to the possible use of such functions in larger molecular 
systems. Some encouraging cMeulations for the ground state of the hydrogen 
molecule by  means of Ganssiau two-electron functions have been reported [7] 
and an extension of this work (unpublished) has led to fairly accurate wave 
functions (D~_~ = 4.72 eV). This paper deals with the ground state of helimn; 
a similar survey for the ground state of the hydrogen molecule will be published 
in due course. 

2. T h e  c h o i c e  of f u n c t i o n s  

Variartional calculations, i. e. minimisations of the energy with respect to all 
parameters were carried out for functions belonging to the classes listed in Tab. ~. 
The selection of these functions was based on the following considerations : type I a 
contains the largest number of exponential parameters (at, b~, gi) for a given num- 
ber of linear terms, or, conversely, the smallest number of linear terms for a given 
number of exponential parameters.  Type IX a is the other extreme, i. e. the largest 
possible number of linear terms (excluding polynomial factors) is formed from a 
given number of exponential parameters (a~ or al and g/). Calculations with a 
function of this type have been reported by R ~ w s  [9]. 

The optimisation of exponential parameters is much more laborious than that  
of the linear parameters;  one would therefore expect that  I a might be computa- 
tionally advantageous when the opt imum values of the exponential parameters 
are known while I I  a might be superior when they have to be optimised. Types I b 
and I I b  are derived from I a and I I  a by  replacement of the exponential correla- 

I a (nC, ha, nb, ng) 

I b (nC, nG, na, nb) 

I c (nC, nG, na, nb) 

I I  a (NC, ma, Ng) 

I I  b (NC, NG, ms) 

I I I  a (m, m, s) 

Table 1 

\~ C~(l + 0 1 ~ ) e x p ( ~ a ~ r  ~ b~r2--2gkr l . r~)  / ,  
k = l  

n 

V (C~ + G~rl'r2) (1 + Or2 ) exp (--aT~r~--b~r~) A. k=l  

~, (C~ + G~ r~2) (1 + 012) exlo ( - -  a~ r~ - -  b~ r~) 

V /__,. C~ (t + 012 ) exlo (--as r~ -- al r~ -- 2g~z r 1"r2) 
k , = l l > ~ k  

/ ,  

k = l l > ~  k 

(t +O12) k=lC~ exp ( - -a~r~)  l 1D~ (--b~r~) 

012 = operator exchanging ghe coordinates of electrons t and 2 
: r  m (m + 1)/2 
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tion factors exp ( --2g r l  .r~) by polynomial correlation terms i § ~ r 1 �9 r2 (2 = 
G/C), involving a change from exponential to linear correlation parameters.  I b 
and I I b  are ]inear combinations of products of one-electron functions which can 
be transformed into pair functions of the form ~ zl X~ (rl) Z/(ra) where the Zi are 

i 
mutual ly orthogonal. The fact tha t  the types I a, I I  a (and I I I  a) are not sums of 
products of one-electron functions is likely to limit their application in many- 
electron systems on account of the non-orthogonality problem. 

Type I c differs from I b by having correlation factors of the form i § ~ r~2 
instead of i ~ 2 rl"re.  I I I a  was (rather incompletely) examined because of its 
analogy to the ordinary (is / ts")-funetion for helium. Here the parameters of the 
1. c. G. f. approximations to the H-a tom is-function should, when correctly scaled, 
be close to the opt imum parameter  values of the helium I I I  a-function. 

Although correlation factors of the form exp ( - ~  rl"r2) and I + ~ r l"r2 are 
known to be less effective than either exp ( - ~ r12 ) or i -~- 2 rl~, functions incor- 
porating the latter types of correlation factors were not examined because their 
use in molecular problems would lead to serious numerical difficulties. 

To facilitate reference in the text,  any particular function belonging to the 
classes of Tab. i is denoted by  its type (e, g. I a ,  I I b ,  etc.) followed by a bracket 
listing the numbers of each kind of parameter.  Thus the function 

12 

~s c~ (i  + o ~ )  e~p ( - ~ r~ -b~ r~) 
i = i  

will be referred to as I a  (12C, i2a, i2b) or as I a  (I2C, 12a, ~2b, Og). Similarly, 
I b (6C, 6G, 6a, 6b) is the function 

6 

Y (c~ + a~ rl"r~) (l + 0~) exp ( -  a~ r~ - b~ r~) 
i = l  

and I I  a (21C, 6a, i t )  refers to 
6 6 

2 2 Cl~l ( l  ~- 0 1 2  ) e X p  ( - -  a k r 2 - -  a 1 r 2 - -  2 g  ~'1 '~ '2 )  
k= l l >~ lc 

"2g" in I I  a (2iC, 6a, 2g) implies tha t  gkz ~ gt or g2 depending on the value of the 
index ~l. (This specification is incomplete.) I~eferenee will also be made to I a (0g), 
i. e. the I a-series without correlation parameters,  or to I a (ng) the I a-series with 
the maximum number  of n correlation parameters,  etc. 

3. Results and discussion 

The results obtained after  minimising the energy with respect to all parameters 
(cf. section 4) are Hsted in Tab. 2. Column 2 contains the energies in modified 
atomic units (RHehc = 0.5 a. u.), column 3 the error d = E - Eexp. Columns 4,5 
and 6 contain data  which are relevant to the numerical labour required to obtain 
the results (see section 3d). 

a) Convergence towards the exact wave ]unction 
The convergence of the energies (or errors) to limiting values, E ~  (or d ~ )  

with increasing numbers of linear terms (N) is illustrated in Fig. i. The data 
are sufficient to indicate tha t  ~1~ for the maximally correlated I a - functions 
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[Ia (ng)] is very small -- cer tainly less t h a n  0.00i a. u. : the best  calculated energy 
for N = n = i6  corresponds to A = 0.0014 and Fig. t shows tha t  there is no sign of a 
change of slope of the linear dependence of log A on logN at  this point.  The appa- 
rent  absence of a finite l imit ing error is a little surprising since Gaussian funct ions 
have an analyt ical ly  incorrect behaviour,  i. e. there is no cusp at r = 0. For  the I a- 

and  I I a - fune t ions  wi thout  correlation parameters  [ I a  (0g) and  I I a  (0g)] A~o 
appears to be close to 0.025; the best calculated energies, -2 .87835 for I a  (i6C, 
i6a,  i6b, 0g) and  -2 .87833  for I I a  (21C, 6a, 0g) lie wi thin  0.0007 a. u. of the 
"S- l imi t" ,  i .e .  the l imit ing energy obta ined  by  superposit ion of hydrogen-like 

open shell funct ions of spherical symmet ry  by StIUL~ and  LOwm~ [11]. 

function 

I a (4C, 4a, 4b, 0g) 
I a (8C, 8a, 8b, 0g) 
I a  (12C, 12a, 12b, 0g) 
I a  (16C, t6a, 16b, 0g) 
I a  (12C, 12a, 12b, tg) 
I a  (12C, t2a, 12b, 2g) 
I a (3C, 3a, 3b, 3g) 
I a (4C, 4a, 4b, 4g) 
Ia (8C, 8a, 8b, 8g) 
Ia  (t2C, t2a, t2b, 12g) 
I a  (16C, t6a, t6b, t6g) 
I b (3C, 3G, 3a, 3b) 
Ib  (6C, 6G, 6a, 6b) 
Ib  (12C, 12G, 12a, 12b) 
I c (6C, 6G, 6a, 6b) 
Ic (t2C, 12G, 12a, 12b) 
I I a  (6C, 3a, 0g) 
I I a  (10C, 4a, 0g) 
IIa (15C, 5a, Og) 
I I a  (21C, 6a, Og) 
IIa (6C, 3a, tg) 
I I a  (10C, 4a, lg) 
I I a  (15C, 5a, lg) 
II~ (21C, 6a, tg) 
II  u (6C, 3a, 2g) 
II  a (10C, 4a, 29) 
I I a  (15C, 5a, 2g) 
I I a  (21C, 6a, 2g) 
I I a  (6C, 3a, 6g) 
I I a  (10C, 4a, t0g) 
I I a  (15C, 5a, 159) 
I I b  (6C, tG, 3a) 
I I b  (6C, 6G, 3a) 
I I b  (10C, t0G, 4a) 
I I I a  (4, 4, 0) 
I I I  a (4, 4, 1) 

E (a. u.) 

Table 2 

--2.86327 
--2.87651 
--2.87767 
--2.87835 
--2.88921 
--2.89375 
--2.86422 
--2.88073 
--2.89808 
--2.90059 
--2.90233 
--2.86516 
--2.89463 
--2.89959 
--2.89521 
--2.89976 
--2.85121 
--2.87185 
--2.87675 
--2.87833 
--2.86339 
--2.88364 
--2.88850 
--2.88991 
--2.86916 
--2.88681 
--2.89279 
--2.89546 
--2.86936 
--2.89038 
--2.89550 
--2.86386 
--2.87201 
--2.89293 
--2.86809 
--2.88442 

A = E-Eex~ 

0.04045 
0.02721 
0.02605 
0.02537 
0.01451 
0.00997 
0.03950 
0.02299 
0.00564 
0.00313 
O.00139 
0.03856 
0.00909 
0.00415 
0.00851 
0.00396 
0.05251 
0.03187 
0.02697 
0.02539 
0.04033 
0.02008 
0.01522 
0.01381 
0.03456 
0.01691 
0.01093 
0.00826 
0.03436 
0.01334 
0.00822 
0.03986 
0.03171 
0.01079 
0.03563 
0.01930 

e . m . e . r . e . m . e .  

t0 
36 
78 

t36 
78 
78 
6 

10 
36 
78 

136 
2t 
78 

300 
78 

300 
t3.5 
38 
87.5 

175.5 
13.5 
38 
87.5 

175.5 
13.5 
38 
87.5 

t75.5 
13.5 
38 
87.5 
49.5 
49.5 

t44 
t36 
136 

4 
8 

12 
16 
12 
12 

3 
4 
8 

12 
16 
t l  
23 
47 
23 
47 
10 
24.5 
49.5 
88 
t0 
24.5 
49.5 
88 
t0 
24.5 
49.5 
88 
10 
24.5 
49.5 
37.5 
37.5 
94.5 
64 
64 

t, r,/e 

32 
128 
288 
512 
300 
312 
27 
48 

192 
432 
768 

66 
276 

1128 
276 

tt28 
3O 
98 

247.5 
528 
40 

122.5 
297 
616 

50 
147 
346.5 
704 
90 

343 
990 
tt2.5 
112.5 
378 
512 
576 

E e x p  = --2.90372; e.m.e. = number of equivalent matrix elements; r .e .m.e .  = number 
of equivalent matrix elements recalculated when an exponential parameter is varied; 
t. r./e = number of equivalent matrix elements recalculated during one cycle. 
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Although no reliable extrapolat ion can be carried out  for the series with linear 
correlation parameters  l i b  (nC, nG, ha, nb), I I b  (NC, NG, ma)] it is dea r  f rom 
Fig. ~ tha t  I b (nG) does not  converge as well as I a (ng) and that , ]oo for I b (nG) is 
p robably  less t han  0.0025 (E~___ -2 .9012) .  I b (nG) is slightly bet ter  than  I a (ng) 
at n = 3 and slightly worse at  n = 12, the differences being ~ 0.001 in both  cases. 

As to the I I  a-functions with correlation parameters,  Aoo for I I  a ( i t)  appears 
to be approx.  0.013 (E = --2.89i).  Graphical est imation of  Aoo for I I  a (2g) f rom 
Fig. i is not  possible; the best calculated energy [ I I  a (21C, 6a, 2g)] is -2 .89546,  
i. e. A = 0.00825 and Aoo is p robably  less than  0.006. 

For  the I I a  (NC, ma, Ng) funct ion (N = m (m + 1)/2, maximal ly  correlated) 
the decrease of log A with log N is - as one would expect - slower than  for 
I a (ng). Although A ~  cannot  be est imated from the diagram, it is not  likely tha t  

- / .5  

-2"O 

-28  

-d.6 
O,G /.4 

\ & (rig) 

0.8 I'0 t2 
I o.q/V 

Fig. 1. Relationship between error (A) and tlle number of independent linear terms (21) 

its value is larger than  tha t  for I a (ng); the energies for I a (0g) and I I  a (0g) tend 
to the same limit (see above);  and since for I I a  (Ng) the ratio of  correlation 
parameters  to other  parameters  is larger than  for I a (ng), it mns t  be assumed tha t  
the g-correlation energy in the  former  will be at  least as effectively allowed for as 
in the latter.  The limiting behaviour  of  I I  a (iVy) functions is, however, of  little 
practical  interest since accurate wave functions of  this type  are disadvantageous 
on account  of  numerical  labour (cf. section 4). 

b) Correlation 
According to the definition Ecorr. = E (Hartree-Fock) -- Eexp the correlation 

energy for the ground state of  helium is --2.86i68 + 2.90372 = 0.04204 a .u .  
The work of  TAYLOB and PABB [13] and its extension by  other  workers (el. [8] ch.3) 
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has shown tha t  this quanti ty can be regarded as the sum of "radial" and "angular" 
correlation energy (approx. 40~o and 60% respectively). The radial par t  can be 
accounted for by  a superposition of configurations of the type (ns' rest), the angu- 
lar part  by  addition of (2pr)2., (3dr) ~-, and (4fl) ~- terms, or, alternatively, by  addi- 
tion of (nff mid)- and similar terms for l = 2, 3, etc. (the primes indicate a variable 
sealing factor; m, n are integers). 

In  the present work the functions without exponential or linear correlation 
parameters, i. e. I a (0g), I I  a (0g) correspond to a superposition of split Gaussian 
orbitals of i s -symmetry:  }~ ~. (lsi tsj); the contribution to the correlation energy 

i j 

arising from the use of such functions might be called (tsi lsj)-correlation. In  I b 
and I I b  terms of the type (2pt 2pj) are added to the former. The exponential 
correlation factors in I a and I I  a (and I I I  a) may, in view of the expansion 

exp ( - -  ~ r l  "r2) = /V Cn (rl "r2) n (l)  
n 

be regarded as equivalent to a superposition of (lsi lsj) with (2p~ 2pj), (3di 3dj),. . ,  
etc. with fixed expansion coefficients. Since rl"r2 depends not only on the angle 
between the radius vectors but also on their magnitude, factors of the type 
exp ( - 2 r l  �9 r2) or 1 + ~ r 1 �9 r2 contribute to both angular and radial correlation. 

I t  is of some interest tha t  the (ls~ lsj)-eorrelation in the simple Gaussian func- 
tions 

I a (og): _Y C~ (~ + 01~) exp  ( - ~k r~ - b~ r~) 

m 

or I I  a (og): ~, Z C'k, ( i  + 0 ~ )  e x p  ( - ak r~ - a, r~) 
k = l  l>,k 

accounts for nearly as much of the radial correlation (i. e. 96%) as superpositions 
of exponential functions multiplied into Laguerre polynomials [11]. 

Concerning the comparison of polynomial and exponential eorrelagon factors 
(t + ~ r l  "r2) and exp ( - 2 r 1 "~'2) the following points are relevant: E [ I a  (ng)] -- 
E [I b (nG)] = 0.0009 for n = 3 and - 0 . 0 0 t  for n = 12. Graphieal interpolation 
indicates tha t  the energies for I b (nG) and for I a (ng) are about equal for n = 7 
(E = -2.897) and that  the superiority of I a increases with larger values of n. 
(ef. section 3a). The differences between the energies of corresponding I I  a (Ng) 
and I I b  (Ng) [N = m (m + 1)/2] is rather larger (0.00275 for N = 6, 0.00255 for 
N = t0) and in favour of I I  b. These results suggest the tentat ive generalisation 
that  the eorrelation factors exp ( -  2 rl" r~) eontribute more effectively towards 
angular correlation and less effectively towards radial eorrelation than  the factors 
I + 2 rl-r~. Thus, where the radial correlation is almost completely accounted 
for by  (ts~ tsj)-eorrelation without eorrelation parameters, exponential correlation 
parameters are more effective; polynomial correlation parameters  are bet ter  
where a significant contribution to the radial correlation remains to be made. The 
latter situation applies to the less accurate functions (E > -2.897).  

The energy obtained with I b (12C, 12G, 12a, 12b), E = -2.8996, is sfightly 
better  than TAYLOI~ and PAm~'s [13] snperposition (is' is 'r) + (2if) ~ + (3dr) 2 + 
(4fl) ~, E = -2.8975. This raises the question whether the inclusion of eonfigura- 
tions with l > I to account for angular correlation is as effective as superpositions 
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of the type 
~. (isi is/) + (2pi 2pj). 

i j 

Comparison of I b (riG) and I c (nG) shows that correlation factors I -~ ~ r~2 
are only very slightly better than the computationally simpler i -b ~ r I "re; the 
energy differences are 0.0006 for n =- 6 and 0.0002 for n -- 12. 

Since it is desirable to reduce numerical labour trial functions containing less 
than the maximumn number of correlation parameters are of interest. When the 
number of g-parameters in II a is changed form 0 to i i. e. g~l = g instead of 0 for 
all k, l), the energy is reduced by 0.0i2 a. u. This hnprovement is almost constant 
between m -= 3 and 6 amounts to a little less than half the residual correlation 
energy after allowance is made for (isi Isj)-correlation. The same improvement 
(within the limits of error) results when one g-parameter is introduced in I a 
(12C, 12a, 12b, 0g). The corresponding effect of one linear correlation parameter 
changing IIb (6C, 0G, 3a) to IIb (6C, IG, 3a), which is equivalent to a multiplica- 
tion of the former function by i ~- ~ r I .re, is only slightly larger (0.0i27). 

A change in the number of g-parameters in II a from one to two produced a 
much smaller improvement which increased almost linearly from 0.002 for m = 3 
to 0.006 for m = 6. 

e) Parameter values 

Tables of parameter  values are in the appendix. In  view of the numerical 
labour required for the optimisation of exponential parameters any method for 
the approximate prediction of optimal parameter  values would be valuable. No 
useful regularities have, unfortunately, been hitherto detected in the parameter  
values of the type I series. 

The parameters of the II a series, on 
the other hand, are a little more predict- 
able. REEVES [9] obtained a good esti- 
mate for the a-parameters of II a (6C, 3a, 
0g) by appropriate scaling of the expo- 
nential parameters of the thi'ee-term 
Gaussian approximation to the is-(II- 
atom) orbital. This method appears to be 
inapplicable to the higher members of 
the IIa series (m = 4, 5, 6); the a-para- 
meters of the helium-function diverge 
from the scaled values of the correspond- 
ing is-parameters,  the former spreading 
over a wider range than the latter (Tab. 3). 
I t  may  be noted, in passing, that  the range 
of the helium a-parameters decreases 
progressively as one and two g-para- 
meters are introduced: the inability of 
the electrons to avoid each other by  
being preferentially on opposite sides of 
the nucleus apperas to lead to a tendency 

2# 

1 
I 11 . 

3 z/ 5 # 

n'z 

Fig. 2. The var ia t ion  of  the exponent ia l  para-  
meters  (a) w i th  m for the series I I a  (NC, ma,  
Og) [iY = m (m -~- 1) /2]. (Ordina te :  log a~, 

i = 1 to m ,  abscissa m) 
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towards greater radial (anti-)correlation th rough  a greater separation between 
the spherical shells. 

The fairly regular variat ion of  the a-parameters  in I I  a (NC, ma) with m is 
illustrated in Fig. 2*. A check calculation with interpolated parameters  for 
I I a  (t0C, 4a, 0g) gave E = - 2 . 8 7 0 8 2 ;  a similar calculation with a-parameters  
determined by  linear extrapolat ion (along the dot ted  lines in Fig. 2) gave 2.87696 
for I I  a (2~C, 6a, 0g). These values differ f rom the best energies obtained for these 
functions by,  respectively, 0.00103 and 0.00137. 

No regularities in the values of  the exponential  correlation parameters  were 
detected in I a. A surprisingly large number  of  these parameters  is negative i. e. 

Table 3 

Comparison o] the ratios o/a.parameters/or Gaussian approximations to the H-atom ls orbital* 

~,C~ exp (-- a~ r 2) and/or the He-atom I I  a-junctions 
i = l  

H ~ n  ~ 3 
I I a  (6C, 3a, 0g) 
I I  a (6C, 3a, 2g) 

H , n = 4  
I I a  (t0C, 4a, 0g) 
I I a  (10C, 4a, 2g) 

H , n =  5 
II  a (15C, 5a, 0g) 
I I  a (15C, 5a, It) 
I I  a (15C, 5a, 2g) 

H , n = 6  
I I  a (21C, 6a, 0g) 
I I  a (21C, 6a, lg) 
I I  a (21C, 6a, 2g) 

a2/al aa/al a,/al as~a1 a6/al 

4.87 
5.23 
5.18 

3.43 
4.21 
4.t3 

3.01 
3.82 
3.66 
3.10 

2.89 
2.91 
2.95 
2.81 

36A 
35.0 
35.5 

14.7 
19.2 
18.5 

98.2 
t27 
121 

9.45 
15.4 
14.2 
10.9 

6.60 
9.19 
9.23 
9.t4 

35.6 220 
69.8 453 
64.0 423 
46.7 310 

t7.2 57.3 
33.5 150 
33.1 149 
32.2 136 

242 
987 
977 
875 

* LONGSTAFF and SInGeR [Tj 

give rise to a positive angular correlation**. This feature becomes less paradoxical  
if one remembers t ha t  the matr ix  elements Hmn or Stun depend on the values of  
gm and gn so tha t  there m a y  be compensations between positive and negative 
g's in different terms;  further,  the kinetic energy integral contains terms which 
increase with gm -t- gn and with gm gn so %hat the corresponding matr ix  elements 
m a y  be appreciably reduced if  gm and gn have opposite signs. 

The correlation parameters  of  I I a  and of  I I b  exhibit  qualitative features 
which one might  expect :  G~l is usually s trongly negative when as and al are bo th  
fairly large ( >  1) and of  the same order of  magni tude;  i. e. if the two electrons are 

* similar diagrams can be obtained for IIa (It), I Ia  (2g) and IIa (Ng) 
** the negative values persist or reappear even after repeated attempts %o obtain po- 

sitive optimum values 
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in fairly small strongly overlapping orbitals. G~l is usually small - positive or 
negative -- when a~ and az are small ( <  0.4) or when a~ and az are of different order 
of magnitude i. e. when the mean distance between the electrons is large even in 
the absence of (2p~ 2pj)-correlation. The exponential correlation parameters 
follow the same pattern (except for the difference in sign). 

d) Numerical labour 
A comparison of the practical utility of the functions surveyed in this paper 

will depend on the answers to the following to questions : A. Which type of func- 
tion will field a certain degree of accuracy with the least expenditure of compu- 
ring time when all parameters 
are unknown ? B. Which type 
of function will yield a cer- 
tain degree of accuracy with 
the least expenditure of com- 
puting time when the opti- 
mum values of the exponen- 
tial parameters are known ? 

Column 4 of Tab. 2 con- 
tains the "equivalent" num- 
bers of H- or S-matrix ele- 
ments which have to be cal- 
culated to determine the 
energy. "Equivalent" means 
that  allowance has been made 
for the fact that  for some 
matrix elements the numeri- 
cal labour is halved because 

< ,21 ul g/2, 
The entries in this column 
are clearly relevant to que- 
stion B (computation when 
exponential parameters are 

- / 5  

-2.0 

-2.0 ~ 

-3"5/. 4 

I 

\ \  " ~  

" . z~ ~c)" 

r i i i 
/.8 Z.2 2.8 3.0 

t0~ (/.r/~) 
Fig.  3. l~elat ionship be tween  the  e r ror  (A) a n d  the numer ica l  

l a b o u r  requ i red  to op thnise  all p a r a m e t e r s  (t .r . /e) 

known). When all exponential parameters have to be optimised by minimi- 
sation of the energy with respect to each parameter in turn, it is only neces- 
sary to recalculate those matrix elements which contain the parameter which is 
being varied. The numbers of equivalent matrix elements which have to be 
recalculated at each step of the minimisation (r. e. m. e.) is listed in column 
5 of Tab. 2. I f  these numbers are multiplied by the number of exponential para- 
meters, one obtains - apart from a common factor of 3 - the total number 
of matrix elements which have to be recalculated during one minimising cycle 
(t. r./e) (eohimn 6 of Tab. 2). These entries provide the information required to 
answer question A (computation when all parameters are unknown) if the follow- 
ing assumptions are made: I. the time required to minimise the energy with 
respect to the linear parameters is relatively small; 2. the time required to eva- 
luate an equivalent matrix element and to store the matrix element in its appro- 
priate matrix position does not depend on the type of function or the number of 
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its linear terms; 3. the number of minimising cycles required to at tain the final 
energy is independent of the type of function and of the number of its linear terms. 
Although these assumptions are certainly incorrect, it is unlikely that  a more 
elaborate analysis would alter the qualitative conclusions drawn from the entries 
in Tab. 2. Actually observed computing times could have been listed but this 
would have given undue emphasis to the characteristics of the computer and the 
computer programmes used in this work. 

Fig. 3, where log A is plotted against log (t. r./c), shows tha t  question A can 
be answered in this sense : I f  the energy is to be calculated with an error of A 
0.04 a. u. I a (ng) is superior to all other types listed in Tab. l ;  this is so in spite 
of the relatively large number of exponential parameters which have to be optimis- 
ed in this type of function. For A ~ 0.02 I b (nG) comes second (although it is 
possible that  I I  a (Ng) may be better  at A ~ 0.00025). When a smaller accuracy, 
i. e. A ~ 0.02 is sufficient, I I  a (lg) and I I  a (2g) are superior to I b (nG), and at 
even larger errors (A ~ 0.03) Ia (Og) is second best. 

For A ~ 0.03 I I a  (2g) becomes increasingly better  than I I a  (lg) but the 
maximally correlated I I  a (Ng) does not overtake I I  a (2g) until A g 0.008. 

A plot of log A against log (e. m. e.) (not reproduced in this paper) shows tha t  
the answer to question ]3 is similar to that  to question A; the superiority of Ia  (ng) 
is enhanced in this case because the I a-functions contain the relatively smallest 
number of linear parameters.  

I I I a  is the least favourable type of trial function. For I I I a  (4, 4, l), E = 
-2 .884;  this is well above the (interpolated value of) E = -2 .892 for I a  (5C, 5a, 
5b, 5g). The numerical labour required for I I I  a (4, 4, i) a) to calculate the initial 
energy, b) to complete one minimising cycle, exceeds the corresponding quantities 
for Ia (Sg) by  factors of 9 and 7.5 respectively. The analogous factors when I I I a  
(4, 4, l) is compared with I I a  (10C, 4a, 2g) (E = -2.887) are 4 and 3.9. 

I t  should be remembered tha t  the above comparisons apply only to two- 
electron systems and tha t  the additional features arising in many-electron sys- 
tems strongly favour I b and I I b  against, respectively, I a and I I  a (cf. p.4 above). 

4. Computational methods  

The evaluation of all integrals is elementary. Optimisation of the values of the 
exponential parameters was effected by  minimisation of the energy with respect 
to each parameter  in turn;  from the E-values corresponding to three adjacent 
equidistant parameter  values the minimum a as calculated by  parabolic inter- 
polation or extrapolation. When this had been done for all exponential parameters 
an extrapolation procedure was employed: let values of the parameters determine 
a many  dimensional vector a; at  the end of a cycle a has changed to a • ~a; the 
energy is now calculated for parameter  values a § 2 ~a, if E has further decreased, 
it is calculated for a A- 3 ~ a etc. until ] is found such that  a -~ ] ~ a is a minimum. 
Another minimising cycle is then carried out followed by extrapolation and this 
sequence is continued until further optimisation has become unprofitable. In  
most cases the criterion adopted was tha t  an additional cycle and extrapolation 
should not reduce E by more than 10 -5 a. u. The extrapolation procedure greatly 
improved the rate of convergence towords the final energy. 

Linear parameters were in most cases minimised by matr ix  methods; a) first 
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E was a d j u s t e d  so as to  make  the  d e t e r m i n a n t  II H - E S  [l = 0; b) the  l inear  
pa r ame te r s  were de t e rmined  as the  e igenveetor  of  the  m a t r i x  H S  -1. This was 
done in i t ia l ly  and  a number  of t imes  dur ing  each cycle and whenever  the  energy 
was ca lcu la ted  dur ing  ex t rapola t ion .  

I n  some of  the  compute r  p rog rammes  the  l inear  pa rame te r s  were opt imised  
in the  same manne r  as the  exponent ia l  pa ramete r s ;  cheek ealculat ions in some 
such eases showed t h a t  the  final energy d id  no t  decrease fur ther  b y  a m a t r i x  
min imisa t ion  with  respect  to  the  l inear  pa ramete rs .  

I n  some of  the  p rogrammes  the  exponen t ia l  pa rame te r s  were a u toma t i c a l l y  
sealed b y  se t t ing  E = - V2/(4 T S )  ( V poten t i a l  energy,  T kinet ic  energy,  S over- 
lap sum). The  final energy does no t  appea r  to  depend  on whether  or not  the  scal ing 
procedure  is used, t hough  the  r a t e  of convergence to  the  final value  m a y  be affected. 

There  remains  the  i m p o r t a n t  quest ion whe ther  the  energies l is ted in Tab.  2 
are close to  the  abso lu te  min ima.  To check this  b y  car ry ing  out  min imisa t ions  
s t a r t ing  f rom widely  different  sets of  in i t ia l  p a r a m e t e r  values requires  a g rea t  deal  
of  comput ing  t ime  and  was only done in one or two cases. I t  appears  t h a t  the  
final energy in the  I a and  I I  a series is insensi t ive to  the  in i t ia l  ehoice of  para -  
meters ,  bu t  t h a t  th is  m a y  no t  be so for I b and  I I  b, which conta in  po lynomia l  
factors .  W o r k  on more genera l  t ypes  of  po lynomia l  Gauss ian  funct ions  for hel ium 
(unpublished)  indica tes  t h a t  subs id ia ry  min ima  m a y  prove r a the r  t roublesome.  
The fa i r ly  smooth  va r ia t ion  of  the  energy wi th  the  number  of  l inear  t e rms  for a 
given ~ype of funct ion  shown in Fig.  t is reassur ing inasmuch  as i t  indica tes  the  
absence of  apprec iab le  f luctuat ions  in  the  devia t ions  f rom the  " t r u e "  energies 
from one m e m b e r  of the  series to  another .  

5{ost of the  numer ica l  work  was done on a F e r r a n t i  "Mercury"  computer ,  the  
r ema inde r  on a F e r r a n t i  "A t l a s "  computer .  
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Appendix 

Parameter values 

I a (4C, 4a, 4b, Og) 

I a (8C, 8a, 8b, 0g) 

a b g C G 

.264 

.244 
2.98 

.812 

.643 

.t96 

.642 

.464 

.224 

.941 

.290 
t .66 

.892 
6.56 

.835 
29.8 

.534 

.598 
113.2 

1.109 
3.63 
3.63 

18.1 
14.21 

1 
0.966 
2.98 
2.67 

- - I  
1.126 
4.58 
5.09 
2.82 
8.01 
3Al 
8.61 

Theoret. chim, Acta (Berl.), Vol. 2 19 
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I a  (12C, 12a, t2b, Og) 

I a  (t6C, t6a, t6b, Og) 

I a (3C, 3a, 3b, 3g) 

I a (4C, 4a, 4b, 4g) 

I a (8C, 8a, 8b, 8g) 

I a  (t2C, 12a, t2b, t2g) 

a b g C G 

.590 

.169 

.t87 

.254 

.420 

.643 

.527 

.625 
1.51 
3.72 
2.71 
2.08 

.408 
A6i 
.447 
.179 
.239 
.282 
.609 
.525 
.637 

1.198 
.947 

1.715 
4.00 

.503 
1.108 
2.57 

.270 
3.09 

.551 

.274 

.279 
2.87 

.784 

IA38 
.206 
.437 
.654 
.213 

t.267 
.364 

2.40 

.509 

.1648 

.175 

.259 

.439 

.653 

.539 

.269 

.528 
2.59 

16.7 
156.7 

.900 
1.034 
5.05 

32.7 
2.87 
4.44 
t.97 

.331 

.542 
1.213 
2.33 

12.74 
83.5 

.815 
t.004 
4.58 

32.0 
385 

2.10 
4.14 

.769 
t.499 
8.99 

.831 

.63t 
19.2 

.892 
5.80 

.960 
29.1 

.946 

.617 
119.9 

1.303 
3.20 
4.72 

t4.50 
31.2 

.340 

.532 
2.57 

t6.7 
153 

.922 
1.045 

.033 

.1238 
--.016 

.033 
--.044 

.259 

.092 

--.302 
.0219 

--.0040 
--.0598 

.0163 

.319 
--.0418 

.691 

1 
3.94 

12.45 
17.5 
17.8 

i --30.1 
I 55.5 

42.3 
l 47.3 
i --206 

214 
38.7 

l 
2.24 
1.49 
7.24 

10.25 
6.93 

--19.9 
30.8 
29.9 
26.2 
13.34 
t t .48  

8.26 
4.26 
t .330 

30.3 

1 
3.93 
2.84 

1 
1.193 
2.69 
2.59 

--1 
.287 
.713 

2.09 
.577 

2.16 
1.021 
1.73 

--.039 1 
.0186 1.78 
.0108 5.21 
.oo87 i 8.51 

--.0160 9.34 
I 

- .142 i-17"4 
- - . 0 3 5 8 1 2 9 . 8  
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Ia (16C, 16a, t6b, 16g) 

Ia (12C, 12a, 12b, tg) 

I b (3C, 3G, 3a, 3b) 

I b (6C; 6G, 6a, 6b) 

Ib (12C, 12G, 12a, 12b) 

.585 
1.54 
3.73 
2.74 
1.96 

.409 

.t61 

.447 

.179 

.246 

.284 

.606 

.524 

.626 
1.196 

.950 
t .715 
3.72 

.493 
1.041 
2.93 

.6t0 

.168 

.196 

.260 

.429 

.641 

.525 

.609 
1.470 
3.72 
2.72 
2.05 

.273 
3.23 

.531 

.696 

.259 

.350 
1.80 

.737 
7.88 

.202 

.239 

.18t 

.230 

.995 

.777 

.648 
5.08 

5.02 
30.5 

2.86 
4.38 
t.94 

.332 

.542 
1.213 
2.28 

12.25 
81.3 

.812 
1.002 
4.61 

30.5 
374 

2.02 
3.92 

.770 
1.455 
8.79 

.269 

.530 
2.56 

16.5 
158 

.901 
1.035 
5.01 

32.5 
2.86 
4.43 
1.99 

.861 

.642 
20.1 

.236 
3.42 

16.2 
.704 

89.8 
1.66 

.560 
2.06 
8.24 

76.2 
.598 

2.02 
448 

.775 

g 

.0531 

.456 
--.766 
--.557 
--.0686 

.0451 

.0089 

.0234 
--.0048 

.00380 
--.00400 
--.0358 

.0427 

.0431 

.0772 

.0050 

.0377 
--2.32 

.288 
--.725 

.385 

.0503 

20.1 
23.9 

i - - 9 1 . 2  
i 95.4 

19.5 

1 
1.517 
5.84 
4.95 
7.63 
5.11 

--2.74 
10.39 
20.4 
19.8 

9.93 
13.78 

--7.89 
--.370 

--2.07 
21.5 

1 
1.08 
4.70 
6.49 
6.71 

--9.44 
18.4 
15.4 
17.5 

--81.9 
84.6 
15.5 

I 
3.67 
2.51 

1 
1.76 
2.05 
3.24 
2.77 
5.07 

1 
2.77 
1.375 
1.207 
2.61 
2.42 
2.41 
7.01 

--.0694 
--.988 

.153 

--.0459 
.16i 
.193 

--i.247 
.16i 

--6.23 

--.0339 
.0644 

--.1092 
--.1044 
--.647 

--1.004 
--.546 

.569 

19" 
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I c (6C, 6G, 6a, 6b) 

I c  (t2C, 12G, 12a, t2b) 

2.83 
3.01 

20.3 
65.6 

.738 

.237 

.339 
2.01 

.730 
8.42 

.220 

.232 

.237 

.232 
1.008 

.900 

.857 
4.93 
3.17 
4.10 

20.4 
59.1 

2.44 
13.27 

.525 
1.91 

.266 
3.49 

t7 . t  
.891 

90.8 
2.19 

.569 
2.03 
8.45 

81.2 
.659 

t.92 
441 

.701 
2.43 

t l . 9  
.495 

t.80 

c G 
I 

1.72 I --7.74 
5.41 !--17.1 
4.08 .242 
5.04 2.37 

t .0357 
t.77 --.0389 
1.98 --.0204 
2.98 .815 
2.67 --.0571 
5.00 3.64 

1 .0264 
3.t6 --.0174 
1.398 .t345 
1.432 --.0021 
2.3t2 .373 
2.14 .758 
2.95 .479 
8.20 --.338 
1.59 4.30 
7.t9 13.30 
4.69 --.1036 
6.05 --1.013 

For the functions I I a  and I I b  the parameters C~, g~ or G~ are listed in the order kl = 
11, 12, t3, " ,  lm, 22, 23, . . ,  2m, etc. 

I I~  (6C, 3a, Og) 
a .373 1.964 13.19 
C .313 1.022 .808 t.091 t.244 --.0883 

II~(lOC, 4a, Og) 
a .2907 1.224 5.591 36.89 
C .201 1.021 1.089 .636 1.58 2.18 1.392 .t54 1.058 .01016 

IIa(15C, 5a, Og) 
a .2400 .9157 3.688 16.76 t08.84 
U .0973 .785 1.010 .635 .360 1.68 2.64 1.74 

.986 .338 1.59 .806 --.0158 .234 --.0225 

I I ~  (21C, 6a, 0g) 

a .2033 .5914 1.869 6.803 30.55 200.7 
C t t2.58 24.33 21.4 13.80 7.29 28.2 73.5 

64.8 39.8 22.5 30.1 86.6 45.1 26.8 --27.97 
58.8 13.28 --56.2 32.9 4 2 . 4  

IIa~ (6C, 3a, lg) 
a .3846 1.987 13.32 
g .0499 
C .617 1.954 1.55 1.99 2.27 .0198 
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IIa(lOC, 4a, lg) 
a .3024 1.245 5.707 37.69 
g .0488 
C .214 t.053 1.111 .650 1.54 2.10 1.332 .t90 1.041 --.005 

I I a  (15C, 5a, lg) 

a .2577 .9439 3.664 t6.49 108.9 
g .0477 
C .1t6 .818 t.053 .692 .404 1.62 2.40 1.72 

.870 .452 t.48 .912 --.0235 .0748 --.0360 

IIa(21C, 6a, lg) 
a .2168 .6397 2.000 7.t87 32.26 211.7 
g .0494 
C 1.262 t7.9 3t.8 27.0 18.t 9.11 40.7 

89.6 79.6 48.8 26.8 37.5 96.5 51.2 
31.9 --36.0 70.4 12.7 --72.0 41.5 --52.1 

I I a  (6C, 3a, 2g) 
a .3756 1.966 t3.12 
g for k l ~ t 1 , 1 2 , 1 3  0.0358, for k1~22,23,33 .5015 
C .315 t.013 .815 t.160 1.239 --.0339 

IIa(lOC, 4a, 2g) 
a .2959 t . t97 5.253 33.97 
g for k l : 1 1  to 22 .0401;for 23 to 44 .4248 
C .205 1.014 1.104 .695 1.506 2.15 t.400 .431 t.094 --.0373 

II~ (15C, 5a, 2g) 
a .3352 1.037 3.654 t5.67 t04.6 
ff for k l : l l  to 24 0.059t;251o 55 1.296 
C .0434 .450 .922 .583 .469 1.239 1.893 

2.256 .744 2.128 1.59 1.92 --.0323 .348 --.00033 

IIa(21C, 6a, 2g) 
a .1827 .5137 1.672 5.885 24.78 160 
g for k I :  t i  to 26 0.0327; for 33 to 66 0.547 
C .0372 9.94 23.03 t8.8 13.27 7.75 33.5 

78.8 84.0 50.0 29.0 80.6 96.1 74.5 
41.5 --8.82 67.4 20.5 --60.2 38.9 --56.0 

II~ (6C, 3a, 6g) 
a .3766 t.969 13.15 
g .0321 0.0443 --0.0376 .479 .654 --.015 
C .315 1.006 .809 1A46 1.234 --.086 

I I ~  (10C, 4a, lOg) 

a .2941 1.213 5.439 35.60 
g .0238 .0289 --.0283 --.00438 .232 .349 

.018 2.05t 3.50 2.90 
C .204 .999 1.117 .639 t.62 2.04 1.492 .629 .951 --.225 
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II~(15C, 5a, 15g) 
a .2352 .7939 2.796 12.03 80.33 
g .0155 .0218 --.0145 --.0119 .t61 A20 

.t94 --.0281 --.292 .804 1.508 --A57 

.792 2.32 .990 
C .0622 .457 .756 .5t l  .329 1.069 1.66 

L608 .764 .977 1.215 .956 -- .02i6 .469 --.00408 

I I b  (6 C, IG, 3a) 
a .393 2.06t 13.85 
C .174 1.043 .807 
G --.t049 

.514 1.175 --.0729 

I I b  (6C, 6G, 3a) 

a .3757 1.941 13.01 
C t.00 6.44 5.17 3.57 7.92 .138 
G --.0747 --.383 .1186 --5.t0 --3.79 --52.7 

I I b  (I0~, t0G, 4a) 

a .2772 t.112 5.014 33.22 
C 1.00 t l .28  13.f4 7.89 10.02 28.3 

2.52 16.4 -4 .09  
G --.0609 --.318 .134 --.382 --6.t6 

.432 --65.9 1,84 -451  

t8.4 

--6.58 

I I I  a (4, 4, 0) 
a .450 .834 4.315 40.52 
C .77t t.179 .694 t.649 
b .2499 1.260 3.657 t5.57 
D 1.95 .755 2.04 1.58 

I I I a  (4, 4, 

a .2728 
C .t078 
b .260 
D 1.316 
g .0440 
G 1.00 

I) 
1.002 4.228 52A8 
.732 1.253 .630 

1.064 6.47 t3.15 
1.7t4 --.431 2.29 

References 
[1] :BoYs, S. F. : Proc. Roy. Soc. (London) A 200, 542 (1950). 
[2] - -  Proc. Roy. Soc. (London) A 258, 402 (1960). 
[3] H~:LLE~AAS, E. : Z. f. Physik 54, 347 (1929). 
[4] - -  Z. f. Physik 65, 209 (1930). 
[5] J~'~ES, H. M., and A. S. COOLIDCE, J.  chem. Physics 1, 825 (t933). 
[6] KRAvss, M. : J.  chem. Physics 38, 564 (1963). 
[7] LONGSTArF, J .  V. L., and K. SI~Gm~: Proe. Roy. Soc. (London) A 258, 421 (1960). 
[8] P ~ ,  R. G.: "The Quantmn Theory of Molecular Electronic Structure", New York, 

W. A. Benjamin, (1963). 
[9] R~,vES, C. M. : J.  chem. Physics 39, I (1963). 

[10] SHAVITT, I. "~1ethods in Computatinnal Physics", Vol. 29.29, New York, Acad. Press (1963). 
[11] S~VLL, H., and P.-O. LSwDzN: J .  chem. Physics 30, 617 (1959). 
[12] SINGES, K. : Proc. Roy. Soc. (London) A 258, 412 (1960). 
[13] T ~ o ~ ,  G. R., and G. R. P ~ R :  Proc. Nat. Acad. Sci. 38,182 (1952). 
[14] Wm~Tm,~, J. L.: J .  chem. Physics 39, 349 (1963). 

(Received June 5, 1964) 


